
12

Mefanet J 2015; 3(1): 12–15

ORIGINAL ARTICLE

PRACTICAL FULLTEXT SEARCH
IN MEDICAL RECORDS

Vít Volšička 1, 2 *, Milan Blaha 1, 2
1 Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Czech Republic
2 Institute of Health Information and Statistics of the Czech Republic, Prague, Czech Republic
* Corresponding author: vit.volsicka@uzis.cz

abstraCt — Performing a search through previously existing documents, in-
cluding medical reports, is an integral part of acquiring new information and edu-
cational processes. Unfortunately, finding relevant information is not always easy,
since many documents are saved in free text formats, thereby making it difficult to
search through them. A full-text search is a viable solution for searching through
documents. The full-text search makes it possible to efficiently search through
large numbers of documents and to find those that contain specific search phrases
in a short time. All leading database systems currently offer full-text search, but
some do not support the complex morphology of the Czech language. Apache Solr
provides full support options and some full-text libraries. This programme provides
the good support of the Czech language in the basic installation, and a wide range
of settings and options for its deployment over any platform. The library had been
satisfactorily tested using real data from the hospitals. Solr provided useful, fast,
and accurate searches. However, there is still a need to make adjustments in order
to receive effective search results, particularly by correcting typographical errors
made not only in the text, but also when entering words in the search box and creat-
ing a list of frequently used abbreviations and synonyms for more accurate results.

BODY
Performing a search through text documents is an

integral part of the educational process and acquiring
new information. Unfortunately, finding relevant in-
formation is not always easy, since many documents
are saved in free text formats, thereby making it diffi-
cult to search through them.

We face the same problem when attempting to scan
medical reports, which contain relevant information
about the health conditions and treatment of certain
patients. These reports are most often saved in free text
formats, without any inner structure and parametric
values that could facilitate a search. There may be good
reason to, at least partially, parameterise and catego-
rise textual medical records. For example, this type of
information would help to find relevant groups of pa-
tients for clinical studies, analyse treatment methods
for certain groups of patients, obtain larger statistics,
or find real cases for educational purposes.

FULL-TEXT INDEX
Medical records are usually stored in relational da-

tabases, such as unstructured text strings. The basic
method, an alias for a naive approach to search in
text string databases, means combing through each
record, word by word and comparing it precisely with
the query. It is not the fastest and best solution, espe-
cially when a language is as morphologically compli-
cated as the Czech language. The performance of such
a procedure, implemented onto the database, depends
on the number of records. With their growing number,
the time needed to scan the records increases linearly,
which is not very effective. Scanning a large volume of
data can easily exceed the time for which the user is
willing to wait for the result. There is a need to choose a
faster and more effective method. This method is called
a full-text search, or an inverted index. It stores words
into an index with links to the documents in which
these words occur. It is much faster due to a smaller
volume of scanned data. Inverted index is also a fa-
vourable possibility for inputting complex queries
containing more words, with an option to add spec-
ifying logical operators.

artiClE history
Received 28 May 2015
Revised 23 June 2015
Accepted 24 June 2015
Available online 7 July 2015

KEywords
fulltext
apache solr
search
medical records
sql
information retrieval

13

Mefanet J 2015; 3(1): 12–15

Practical fulltext search in medical records

MORPHOLOGY,
NORMALISATION
AND METHODS

We found out how to solve the performance prob-
lem, but not the problem with language morphology,
which could be complex and tricky, especially with
the Czech language. Words in the text might be found
in various forms. Standard search looks for the same
form of the word as if it was assigned in the query. If
there is not a perfect match, the word is ignored. For
example, when we insert the word “lékař” (doctor),
we expect to receive records that contain additional
words, such as “lékařův”, “lékařovo”, “nelékařský” etc.,
therefore finding all forms of word, including variants
with various prefixes, suffixes, and plurals.

The next challenge is to deal with diacritical marks
found in some languages. Some users write words
without diacritical marks, and the computer does
not recognise that it is the same word. It is possible to
remove diacritical marks entirely, but this could in-
crease the number of irrelevant results.

As we mentioned above, the scanned text should
contain various forms of words, which further com-
plicate searches. The solution to this problem is to
transform words into their basic forms. This pro-
cess is called normalisation and we apply it both to
the records and to the given query. Consequently,
the number of successfully returned words will in-
crease, while the size of the index will decrease due
to a smaller amount of indexed words. We will intro-
duce several ways of normalisation.

Lemmatisation

Lemmatisation is the process of transforming
a work to the grammatically correct basic form,
lemma. For example, the word “vyléčil” (cured) should
be transformed to “léčit” (to cure). Homonyms are
a weak point in this method, however. Homonyms are
words with the same form but with different mean-
ings. If we want to choose the correct meaning of the
word, we would have to make a semantic analysis of
the whole sentence. But the cost of this process is very
high, so it is rarely used. Therefore, the correct ap-
proach is to return to all forms, which yields an even
lower accuracy.

Stemming

Stemming is the process of eliminating prefixes and
suffixes, so the word is reduced to its basic form, or
the root. The stem might not necessarily be the same
as the morphological root, and might have no mean-
ing. This is the one difference from lemmatisation,
which returns a valid word. For example, the root of
word “léčit” is “léč.” According to the complexity of

figurE 1 Scheme of connection

figurE 2 Frontpage

figurE 3 Results of search with highlighted keywords

14

Mefanet J 2015; 3(1): 12–15

Volšička V et al.

the language, conversion into the stem of the word
can be algorithmised with a certain quality. This has
an advantage over lemmatisation, which needs foot-
ing in the base form of a specific vocabulary in order
to function. We face two kinds of mistakes when ap-
plying the stem algorithm. The first problem is the
over-stemming that occurs when two different words
are transferred to the same stem. This is considered
a false positive error. The second problem is under-
stemming, which occurs when two words that should
have the same stem actually have different stems. This
is called a false negative error [1]. It has been proved
that aggressive stemming algorithms reduce false pos-
itive errors, but at the expense of an increase in false-
negative errors. Aggressive algorithms behave con-
versely [2].

N-Grams

An n-gram is a contiguous sequence of n items from
a given word extracted from a text. The principle of
this method consists in the fact that similar words have
a large number of the same sequences. The length of
a sequence is typically chosen as either 2 (bigrams) or
3 (trigrams). The value of n is appropriate to test for
each language, because it may significantly affect the
quality of the result. If n is too small, each word is di-
vided into many n-grams and the query yields a large
number of irrelevant results. However, when we in-
crease the value of n, the size of the index will grow
exponentially [3]. For example, we could divide the
word “nemocnice” (hospital) by bigram into the se-
quence *N, NE, EM, MO, OC, CN, NI, IC, CE, E* and by
trigram: **N, *NE, NEM, EMO, MOC, OCN, CNI, NIC,
ICE, CE*, E**, where the asterisk means an empty space.
The search query is decomposed into the same size of
n-grams and afterwards the number of identical parts
is compared. The advantage of this technique is that it
provides language independence of the text.

Combination of different approaches

We combine several approaches to receive the best
quality outcome. One suitable combination for the
Czech language is the cooperation of stemming algo-
rithms, Brute Force and Suffix Stripping. The Brute
Force method is based on a “look-up” table containing
a construction of state forms of words and their roots.
The algorithm enters a query into the table and, in con-
formity, yields the root of the word. The Brute Force
approach is criticised for its lower speed of data pro-
cessing, as well as for its inability to cover the entire
language. Due to the number of word forms in the
Czech language, it is unrealistic to expect that all of
their forms could be captured. Therefore, it is difficult
to design the Brute Force algorithm, because we would
need to record a large number of words to achieve an
acceptable level of accuracy. However, continuously

adding words only improves the accuracy. The advan-
tage of this method is that there is zero risk of over-
stemming or under-stemming.

An appropriate complement to this purely vocabu-
lary-based method is the Suffix Stripping algorithm,
which removes the Brute Force method’s criticized
properties. Suffix Stripping works on an application’s
simple rules for removing prefixes and suffixes to
obtain the root word [4]. The pitfall of this approach
is that it yields unusual situations, such as, in some
cases, changing the word root.

RESULTS – FULL-TEXT SEARCH
TOOL IMPLEMENTATION
IN APACHE SOLR

The aforementioned theoretical solutions are imple-
mented in a platform called Apache Solr, which was
primarily intended for efficient full-text searches. It is
an open-source application written in Java. This makes
Solr a cross-platform, so it can be deployed on most
systems. Other advantages include support in choos-
ing the standardisation of words, removing diacriti-
cal marks, speed, and a broad range of settings. Solr
needs to run its own server, though; fortunately, “vir-
tual” servers (servlet container) – such as Jetty, for ex-
ample – are an option.

From the above-mentioned methods, Suffix Strip-
ping was chosen as the most appropriate method for
the standardisation of Czech words [5]. It has already
been implemented into Solr.

Firstly, for proper functioning we must connect
Solr to a database or other repository, where a med-
ical centre has stored its medical records. It is advis-
able to have the records stored in UTF-8 coding for
a proper display and to retrieve characters with dia-
critical marks; however, Solr works with most data-
bases. Interconnection is based on downloading the
appropriate file *-connector-java.jar and entering
access data into the configuration file.

The second part is to index records from the data-
base. The appropriate configuration file will specify
which database field would be indexed, and how it
would be processed and normalised. Based on tests
on which algorithm achieves the best results when
processing a text written in Czech, we found that Built
Stemmer was the best candidate [5]. Solr is natively
able to process more than 33 languages. In case of the
Czech language, it is worth to add a feature for the re-
moval of diacritical marks. When we want to add new
entries to the index, we might not start the whole pro-
cess over again, but run a process called Delta import.

The last part of the process is to install a library
called Solarium. Solarium is not absolutely neces-
sary, but makes typing commands in PHP for com-
municating with Solr faster and easier. The PHP pro-
gramming language is the most widely used in the web

15

Mefanet J 2015; 3(1): 12–15

Practical fulltext search in medical records

scripting language, and as Solr, is not dependent on the
platform. We use it to create a web application which
will provide a user-friendly interface for searching
through the indexed records. The appearance of the
web application depends on specific requirements.
Solr makes calculations based on proprietary algo-
rithm relevance for each document of the given query,
and determines the order of results accordingly. The
way of ordering can be changed. Found words can also
be highlighted in the text.

CONCLUSION
Performing a search in the given text documents, es-

pecially in medical reports, it is not a trivial matter. We
encounter several issues that need to be resolved, de-
pending on the morphological complexity of the given
language. However, these problems can be solved, and
the solutions have been already implemented in appli-
cations primarily designed for text searching. One of
these applications is the Apache Solr, which includes a
built-in support for more than 33 languages, including
the Czech language. Additional languages can be added
by using the library Hunspell, which provides support
for 99 languages (http://hunspell.sourceforge.net/).
Apache Solr thus offers a suitable solution for search-
ing through medical records. Thanks to its cross-plat-
form nature, the application can be deployed on exist-
ing solutions in medical facilities without the need for
major interventions to their systems.

The tool has been implemented and successfully
used for searching through medical records stored
in a MySQL database. Records themselves might be

located in different data stores and, due to the support,
might be written in many languages. The application
has been pilot-tested and used to scan 54,486 written
records in Czech. Solr has dealt with the normalisation
of words and with the size of databases very well. Solr
provides useful, fast, and accurate searches. An exam-
ple of a successful search is shown in Figure 3. Solr
offers a wide range of options and customisations, so
it can be easily modified to suit specific requirements.

The described solution for full-text searches sup-
poses that there are syntactically correct medical re-
cords in the database, and that the query is correct.
However, typographical errors are very common. Like-
wise, a mixture of Czech and Latin words and expres-
sions, or common use of abbreviations is often used.
This semantic part is rather problematic within com-
puter text analysis, but very important for returning
relevant records.

One possible solution to correcting typographical
errors is to implement an algorithm called the Dame-
rau–Levenshtein Distance. This algorithm counts the
number of steps (insertion, deletion, or substitution
of a single character, or a transposition of two adja-
cent characters) that are needed to retrieve another
word. Damerau stated that the operations correspond
to more than 80% of all human misspellings [6].

A solution for abbreviations and Latin words con-
sists of creating a dictionary of synonyms and trans-
lations. Solr already offers this function. For our future
work, it will be necessary to build such functionalities
and implement the correction of typographical errors.

Vít Volšička

REFERENCES

[1] Jivani AG. A Comparative Study of Stemming Algorithms. Int J Comp Technol Appl 2011; 2(6): 1930-1938.
[2] Paice C. An evaluation method for stemming algorithms. Proceedings of the 17th annual international ACM

SIGIR conference on Research and development in information retrieval. Springer-Verlag: New York 1994: 43–50.
ISBN 0-387-19889-X.

[3] Coetzee D. TinyLex: Static N-Gram Index Pruning with Perfect Recall. Proceedings of the 17th ACM Conference
on Information and Knowledge Management. Association of Computation Machinery: New York 2008: 409–418.
ISBN 978-1-59593-991-3.

[4] Kumar D, Rana P. Stemming of punjabi words by using brute force technique. Int J Eng Sci Technol 2011; 3(2):
1351–1358.

[5] Sikora R.. Vyhledávání v českých dokumentech pomocí Apache Solr. Masaryk University: Brno 2012. MSc thesis.
[6] Damerau FJ. A technique for computer detection and correction of spelling errors. Commun ACM 1964; 7 (3): 171–176.

